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Entropic Repulsion

In physics, an entropic force acting in a system is an emergent
phenomenon resulting from the entire system’s statistical tendency to
increase its entropy, rather than from a particular underlying force on
the atomic scale. Common example include: surface tension,
elasticity of rubber, etc.

In probability theory, this phenomenon is interpreted as follows: in
many cases, a typical realization of some statistical physics model is
not the configuration with the lowest energy, but rather from some
collection of configurations with high cardinality (entropy).

The fact that BM typically travels a distance of O(
√
t) in time t can

be regarded as a result of an entropic force.
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Entropic repulsion for Gaussian free fields

Consider a random walk bridge W : [0, . . . , 2N]→ Z such that
W [0] = W [2N] = 0. If we condition on the (rare) “hard-wall” event

{W [k] ≥ 0, k = 0, . . . , 2N},
then the mean value of W [N] would be “pushed” to O(

√
N) from 0.

This kind of entropic repulsion phenomenon can also be observed in
higher dimension, in the study of Gaussian free fields (as well as of
other models).

In fact, the RW bridge itself can be regarded as a 1D Gaussian free
field with Dirichlet boundary condition.
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Entropic repulsion for Gaussian free fields

Bolthausen, Deuschel and Zeitouni (CMP, ’95) investigated the
following question:

Consider X : Zd → R the Gaussian free field on Zd , d ≥ 3. Let
K ∈ Rd and KN be its discrete blow-up.
Let ΩN stand for the event {X (z) ≥ 0, ∀z ∈ KN}. Then

lim
N→∞

1

Nd−2 logN
logP[ΩN ] = cdcapB(K )

where capB(K ) stands for the Newtownian capacity of K .
(Deuschel and Giacomin, CMP ’99) Moreover, as N →∞,

P
(
X (·)−

√
c ′d logN

∣∣∣ΩN

)
⇒ P

(
X (·)

)
.

In other words, the field is “pushed” to infinity by the hard-wall
conditioning.

Similar results also hold for the 2D case, (P[ΩN ] ≈ N−c logN , field
pushed to c2 logN conditioned on ΩN), see Bolthausen, Deuschel and
Giacomin (AoP, ’01).
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Random interlacements

The model of random interlacements was introduced by Sznitman
(Ann. Math. ’10) to describe the local picture left by the trace of a
random walk on a large discrete torus (d ≥ 3) when it runs up to a
time proportional to the volume of the torus.

It can be regarded as a Poissonian cloud of doubly-infinite
trajectories, governed by an intensity parameter u > 0.
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Random interlacemeents

Write Iu ⊂ Zd for the union of all trajectories that appears in the
cloud. We can then characterize Iu as a random subset of Zd

through the following relation

P[Iu ∩ V = ∅] = exp(−ucap(V ))

where V ⊂⊂ Zd and cap(V ) stands for the (random walk) capacity
of V .

One can also regard random interlacements as a model of percolation
with strong correlation.

In fact,
Cov(10∈Iu , 1x∈Iu) ∼ c(u)|x |2−d .

The interlacement set Iu is always well-connected. It is the vacant
set Vu := Zd \ Iu on which the phase transition of percolation is
non-trivial.
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Percolation on the vacant set

Theorem (Sznitman ’10, Sidoravicius-Sznitman ’08, Teixeira ’08)

There exists u∗ ∈ (0,∞) such that

for all u < u∗, Vu has a unique infinite cluster, Pu−a.s.;

for all u > u∗, Vu has no infinite cluster, Pu−a.s.

Let u∗∗ stand for the critical parameter above which Vu is strongly
non-percolating:

u∗∗ := inf{u ≥ 0;P
(
[−L, L]d

Vu

↔ ∂[−2L, 2L]d
)
→ 0}.

One can define another critical threshold u, below which Vu is
strongly percolating.

It is trivial that u ≤ u∗ ≤ u∗∗.
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A Big Open Question: Sharpness of Phase Transition

Conjecture

Do the critical parameters actually coincide, i.e.,

u = u∗ = u∗∗?

There is a lot of evidence that this conjecture should be true, but the
strong correlation of the model hinders us from applying old and new
tools to show sharpness of phase transition.

The parallel sharpness of phase transition of the level sets of Gaussian
free field has been verified recently by Duminil-Copin, Goswami,
Rodriguez, Severo (’20+).
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Intersection of two interlacements

It is natural to investigate the intersection of two interlacements.

Zhuang (Alea ’21) investigated percolative properties.
It is also a nice playground for observing entropic repulsion and the
so-called “Swiss cheese” picture, to be introduced later.

Theorem (L. and Zhuang, ’22+, )

(Large deviations) For a compact regular K ⊂ Rd , let KN be its discrete
blow-up. Consider two independent interlacements I1 and I2 with
intensities u1, u2 > 0 resp.,

lim
N→∞

1

Nd−2 logP [I1 ∩ I2 ∩ KN = ∅] = −u1 ∧ u2
d

capB(K ).

(Entropic repulsion) Moreover, if u2 < u1, for any ε > 0,

lim
N→∞

P

[
cap (KN ∩ I2) < εNd−2∣∣I1 ∩ I2 ∩ KN = ∅

]
= 1.
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Comments

Theorem (L. and Zhuang, ’22+)

(Large deviations) For compact regular K ⊂ Rd and let KN be its discrete
blow-up. Consider two independent random interlacements I1 and I2 with
intensities u1, u2 > 0 resp.

lim
N→∞

1

Nd−2 logP [I1 ∩ I2 ∩ KN = ∅] = −u1 ∧ u2
d

capB(K ).

(Entropic repulsion) Moreover, if u2 < u1, for any ε > 0,

lim
N→∞

P

[
cap (KN ∩ I2) < εNd−2∣∣I1 ∩ I2 ∩ KN = ∅

]
= 1.

The lower bound of the first claim is trivial.

However, the upper bound requires an involved coarse graining
argument.
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An Interesting Variational Problem

In the course of the proof, we also obtain an interesting large
deviation bound on the capacity of the intersection of interlacements
with a macroscopic body is unusually small.

Consider a regular compact K ⊂ Rd and write λ0 = capB(K ). For
0 < λ < λ0, define

fK (λ) = inf
A⊂K , capB(A)≤λ

capB(K \ A), (1)

where the infimum runs over all “nice” subsets of K .
This variational problem seems to be very difficult. We do not know
the explicit formula for fK even when K is a cube or a ball.

Theorem (L. and Zhuang, ’22+)

Given u > 0 and consider random interlacements Iu, then

lim
N→∞

1

Nd−2 logP[cap (KN ∩ Iu) < λNd−2] = −u

d
fK (dλ),
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Disconnection by Random Interlacements

Given M > 0 and a regular K ⊂ [−M,M]d and N ∈ N, look at its
discrete blow-up KN . And consider the event

AN
4
=
{
KN

Vu

6←→ ∂SN
}

:

“no path in Vu connects KN with SN := [−MN,MN]d”.

When u is small such that Vu is (strongly) percolative, An is a very

unlikely event. A naive bound gives P[An] ≥ c−N
d−1

.

Question: What is the precise asymptotics of P[AN ]? What is the
optimal strategy in realizing AN?

One can also consider the same type of disconnection by a single
trajectory of random walk: let Xn be a simple random walk on Zd ,
d ≥ 3, started from the origin and write V = Zd \ X [0,∞). Then
define A0

n in the same fashion as AN , with Vu replaced by V.
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Disconnection by Random Interlacements and SRW

Theorem (L.-Sznitman EJP ’14 lower bound, Sznitman PTRF ’17 upper
bound for K being a box, Nitzschner-Sznitman JEMS ’20 upper bound for
general K )

For 0 < u < u∗∗ and 0 < u < u resp.,

lim inf
N→∞

1

Nd−2 logP[AN ] ≥ −
(
√
u∗∗ −

√
u)2

d
capB(K );

lim sup
N→∞

1

Nd−2 logP[AN ] ≤ −(
√
u −
√
u)2

d
capB(K ).

In the case of random walk, similar bounds for A0
n hold with u = 0 on the

RHS’ (the upper bound trivially follows from the RI case, but lower bound
(L. AoP ’17) requires substantial work and a somewhat different strategy).
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Asymptotics on the Disconnection Probability

The lower bound is obtained through the introduction of the tilted
interlacements, i.e., RI defined on Zd with inhomogeneous
edge-weights which is modulated by a certain harmonic function.

The upper bound is obtained through an extremely involved coarse
graining argument and capacity estimates.

If the conjecture that u = u∗ = u∗∗ is true, then the upper and
lower bounds coincide and we can confirm that the “tilted
interlacements” indeed provides an optimal strategy for the
disconnection.
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Entropic Repulsion for Random Interlacements Conditioned
on disconnection

Chiarini and Nitzschner (AoP ’20) showed that if the conjecture

u = u∗ = u∗∗

is indeed true, then conditioned on the disconnection event An, the
occupation time profile of the interlacements indeed roughly coincides
with that of the tilted interlacements. In other words, this suggests
that conditioning on disconnection “pushes” up the intensity of
interlacements from u to u∗ in the bulk of KN .
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How to turn a Wiener Sausage into “Swiss Cheese”?

In 2001, van den Berg, Bolthausen, and den Hollander studied the
downward (moderate) deviation of the volume of a Wiener Sausage.

Theorem (BBH ’01, Ann. Math.)

For a > 0, let W a(t) be the a-neighborhood of a Brownian motion in Rd

observed until time t. For d ≥ 3 and 0 < b < κa,

lim
t→∞

1

t(d−2)/d
logP (|W a(t)| ≤ bt) = Id(a, b),

where Id(a, b) is a rate function with a certain variational representation.

They also show that the optimal strategy to realize the above large
deviation is for W to “form a Swiss cheese”: this Wiener sausage covers
part of the space, leaving random holes of O(1) size whose density varies
on scale t1/d according to a certain optimal profile.
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Wiener Sausage into “Swiss Cheese”, cont.

In 2004, the same authors studied the (upward) large deviation of the
volume of the intersection of two Wiener sausages.

Theorem (BBH ’04, Ann. Math.)

For a > 0, let W a
1 (t) and W a

2 (t) be the a-neighborhoods of two
independent standard Brownian motions in Rd starting at 0 and observed
until time t. For d ≥ 3 and c > 0,

lim
t→∞

1

t(d−2)/d
logP (|W a

1 (ct) ∩W a
2 (ct)| ≥ t) = Id(a, c),

where Id(a, c) is a rate function with a certain variational representation.

Again, the optimal strategy to realize the above large deviation is for W1

and W2 independently to “form a Swiss cheese”: they cover part of the
space, leaving random holes of O(1) size whose density varies on scale
t1/d according to a certain optimal profile.

Xinyi Li, BICMR, Peking University Joint work with Zijie Zhuang (Penn)Entropic Repulsion for Random Interlacements Nov. 25 2022 17 / 19



Wiener Sausage into “Swiss Cheese”, cont.

In 2004, the same authors studied the (upward) large deviation of the
volume of the intersection of two Wiener sausages.

Theorem (BBH ’04, Ann. Math.)

For a > 0, let W a
1 (t) and W a

2 (t) be the a-neighborhoods of two
independent standard Brownian motions in Rd starting at 0 and observed
until time t.

For d ≥ 3 and c > 0,

lim
t→∞

1

t(d−2)/d
logP (|W a

1 (ct) ∩W a
2 (ct)| ≥ t) = Id(a, c),

where Id(a, c) is a rate function with a certain variational representation.

Again, the optimal strategy to realize the above large deviation is for W1

and W2 independently to “form a Swiss cheese”: they cover part of the
space, leaving random holes of O(1) size whose density varies on scale
t1/d according to a certain optimal profile.

Xinyi Li, BICMR, Peking University Joint work with Zijie Zhuang (Penn)Entropic Repulsion for Random Interlacements Nov. 25 2022 17 / 19



Wiener Sausage into “Swiss Cheese”, cont.

In 2004, the same authors studied the (upward) large deviation of the
volume of the intersection of two Wiener sausages.

Theorem (BBH ’04, Ann. Math.)

For a > 0, let W a
1 (t) and W a

2 (t) be the a-neighborhoods of two
independent standard Brownian motions in Rd starting at 0 and observed
until time t. For d ≥ 3 and c > 0,

lim
t→∞

1

t(d−2)/d
logP (|W a

1 (ct) ∩W a
2 (ct)| ≥ t) = Id(a, c),

where Id(a, c) is a rate function with a certain variational representation.

Again, the optimal strategy to realize the above large deviation is for W1

and W2 independently to “form a Swiss cheese”: they cover part of the
space, leaving random holes of O(1) size whose density varies on scale
t1/d according to a certain optimal profile.

Xinyi Li, BICMR, Peking University Joint work with Zijie Zhuang (Penn)Entropic Repulsion for Random Interlacements Nov. 25 2022 17 / 19



Wiener Sausage into “Swiss Cheese”, cont.

In 2004, the same authors studied the (upward) large deviation of the
volume of the intersection of two Wiener sausages.

Theorem (BBH ’04, Ann. Math.)

For a > 0, let W a
1 (t) and W a

2 (t) be the a-neighborhoods of two
independent standard Brownian motions in Rd starting at 0 and observed
until time t. For d ≥ 3 and c > 0,

lim
t→∞

1

t(d−2)/d
logP (|W a

1 (ct) ∩W a
2 (ct)| ≥ t) = Id(a, c),

where Id(a, c) is a rate function with a certain variational representation.

Again, the optimal strategy to realize the above large deviation is for W1

and W2 independently to “form a Swiss cheese”: they cover part of the
space, leaving random holes of O(1) size whose density varies on scale
t1/d according to a certain optimal profile.

Xinyi Li, BICMR, Peking University Joint work with Zijie Zhuang (Penn)Entropic Repulsion for Random Interlacements Nov. 25 2022 17 / 19



Swiss Cheese in the discrete

Phetpradap (Thesis ’12) obtained the respective results in the
discrete.

L. (AoP ’17) applied the tilted interlacements as the (plausible)
optimal strategy in computing the asymptotic probability in the
disconnection-by-simple-random-walk problem.
Sznitman ’17 suggested that “the tilted interlacements possibly offer
in a discrete context a microscopic model for the type of ‘Swiss
cheese’ picture advocated in [BBH01]”.
Asselah and Schapira (’17, ’20) recently have some partial progress
towards understanding the nature of “Swiss cheese” in the discrete.
For the problem we investigated, we conjecture that tilted
interlacements also enters into play in the conditioning.
Conditional on (I1 ∩ I2) ∩ KN = ∅, when N tends to ∞, we expect
that the law of (I1, I2) should resemble more and more (Iu1 , Ĩ)
where Ĩ represents a kind of tilted interlacements with intensity 0 in
KN and u2 at infinity, indendent of Iu1 .
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Thanks for your attention!
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